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Abstract 

Introduction Pancreatic stone protein (PSP) is a novel biomarker that is reported to be increased in pneumonia and 
acute conditions. The primary aim of this study was to prospectively study plasma levels of PSP in a COVID-19 inten-
sive care unit (ICU) population to determine how well PSP performed as a marker of mortality in comparison to other 
plasma biomarkers, such as C reactive protein (CRP) and procalcitonin (PCT).

Methods We collected clinical data and blood samples from COVID-19 ICU patients at the time of admission (T0), 
72 h later (T1), five days later (T2), and finally, seven days later. The PSP plasma level was measured with a point-of-care 
system; PCT and CRP levels were measured simultaneously with laboratory tests. The inclusion criteria were being a 
critical COVID-19 ICU patient requiring ventilatory mechanical assistance.

Results We enrolled 21 patients and evaluated 80 blood samples; we found an increase in PSP plasma levels accord-
ing to mixed model analysis over time (p < 0.001), with higher levels found in the nonsurvivor population (p < 0.001). 
Plasma PSP levels achieved a statistically significant result in terms of the AUROC, with a value higher than 0.7 at T0, 
T1, T2, and T3. The overall AUROC of PSP was 0.8271 (CI (0.73–0.93), p < 0.001). These results were not observed for CRP 
and PCT.

Conclusion These first results suggest the potential advantages of monitoring PSP plasma levels through point-of-
care technology, which could be useful in the absence of a specific COVID-19 biomarker. Additional data are needed 
to confirm these results.
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Graphical Abstract

Introduction
Pancreatic stone protein (PSP) is a novel biomarker that 
is reported to be increased in pneumonia and acute con-
ditions, and PSP appears to be superior to procalcitonin 
(PCT) in discriminating among patients with infection, 
infection with sepsis, and no infection [1]. Recently, Van 
Singer et  al., [2] described the potential advantages of 
measuring plasma PSP levels in critically ill COVID-19 
patients due to the abnormal endothelial activation and 
inflammatory cytokine cascade that can be observed 
in COVID-19. Based on these assumptions, the lack of 
demonstrated clinical biomarkers in coronavirus dis-
ease progression requires researchers to further investi-
gate the prognostic role of PSP in critically ill COVID-19 
patients [3, 4]. The measurement of PSP in critical set-
tings has found its application, especially in case of sep-
sis or in combination with other biomarkers [5]. Recently 
Klein et  al. described the potential prognostic role of 
PSP in burns victims, showing the ability to differenti-
ate between septic and non-septic patients during acute 
burn care [6]. The serial measurement of this protein over 
time has shown a prognostic value more than PCT and 
C-reactive protein (CRP) according to Pugin et  al. [7]. 
According to Lagadinou et al., the measurement of PSP 
in hyper-inflammation, such as COVID-19 inflammation, 

could accurately identify patients requiring prolonged 
hospitalization [8].

Aim of the study
In a proof-of-concept analysis, we measured PSP, PCT, 
CRP plasma levels in multiple blood samples, and we 
analysed these parameters as predictors of long term-
care mortality (90  days). The primary endpoint was to 
study PSP plasma levels prospectively in a COVID-19 
intensive care unit (ICU) population to define how well 
it performed as a marker of mortality in comparison to 
other plasma biomarkers such as CRP and PCT.

Methods
Ethical approval was granted by the Ethics Committee 
of our health system (Azienda Ospedaliero Universitaria 
di Modena, reference number 784/2021) and the study 
was carried out in accordance with relevant guidelines 
and regulations in the Declaration of Helsinki. Informed 
consent was obtained for all participants when it was 
possible, in case of impossibility it was waived according 
to Italian regulations. Patients admitted to a COVID-19 
medical intensive care unit who received standard medi-
cal care as recommended in COVID-19 sepsis guidelines 
were screened from March 2021 to June 2021 [9–11] At 
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the same time of blood sample collection, we retrospec-
tively collected information on the mechanical ventila-
tion type; systolic, diastolic and mean arterial pressure 
measured via a radial or femoral arterial catheter and 
recorded by the patient’s electronic monitor; urine output 
per day measured via a urinary catheter; vasopressor and 
inotropic support dosage; and daily prescribed therapy to 
describe the patient’s condition at baseline. Physiological 
variables and medications of interest, the Horowitz index 
or Sequential Organ Failure Assessment (SOFA) scores 
were also collected. Finally, patient survival was followed 
even after discharge from the ICU, and 90 days of mortal-
ity data was collected from an electronic register.

Inclusion and exclusion criteria
Inclusion criteria were as follows: age over 18 years, arte-
rial catheter in  situ, respiratory failure with mechanical 
ventilation assistance, urinary catheter in  situ, expected 
ICU length of stay > 24  h, and informed consent signed 
by patient or next-of-kin when possible, in line with Ital-
ian regulations. Exclusion criteria were as follows: patient 
or next-of-kin refusal or do-not-resuscitate disposals, 
previous admission to a COVID-19 ICU, and COVID-
19-related hemorrhagic or ischemic stroke as the cause of 
admission to the ICU.

Sample measurement
Patients were positioned lying flat for at least 1 h before 
the collection of a 4 mL blood sample from the arterial 
catheter into an ethylene diamine tetra-acetic acid tube 
(Vacutainer; Becton Dickinson, Franklin Lakes, NJ). PSP 
levels were measured in whole blood by point-of-care 
testing using nanofluidic technology (PSP fluorescent 
immunoassay on the abioSCOPE® IVD device, Abionic 
SA, Epalinges, Switzerland). PCT and CRP levels were 
measured upon admission through routine blood tests. 
Blood samples were drawn at the patient’s time of admis-
sion to the ICU, and in the morning (06:00–12:00), PSP, 
PCT, and CRP levels were measured at the time of admis-
sion (T0), 72 h later (T1), five days later (T2) and finally 
7 days later (T3).

Statistical analysis and sample size
We planned a priori analysis of variance (ANOVA), and 
mixed model test repeated measures correlation coeffi-
cients (Rrm) were used for within-patient comparisons, 
cons is the constant (Y intercept) of the model [12, 13]. 
A sample of 10 patients was necessary to have 95% power 
to detect f = 0.5 (medium size effect) for weekly variation 
of PSP with alpha = 0.05 (supplementary information, 
sample size file) [14]. Results were reported as the mean 
plus standard deviation (st. dev) and with the 95% confi-
dence interval (CI). The area under the receiver-operator 

(AUROC) curves was used to test mortality predictions, 
and the p value (p) was considered significant if < 0.05. 
Analysis of variance, the Student T test, and the Wilcoxon 
rank sum test were also performed depending on type of 
variable. A probit model was applied for regression with 
a binary dependent variable. Pearson correlation analysis 
was performed for continuous variables. Postestimation 
margins were estimated to plot some results. All analyses 
were performed with STATA (version 16.0, Stata Corp, 
College Station, TX, USA) and G Power (Erdfelder, Faul, 
& Buchner, 1996) software was used to estimate sample 
size [15, 16].

Results
Patients
One hundred and nine patients were admitted to the 
COVID-19 ICU from March  1st to June  1st (90  days). 
According to the previously listed criteria, a total of 
twenty-one of these patients were enrolled in the study: 
11 women (52.38%) and 10 males (47.62%). One hun-
dred and thirty-eight blood samples were collected 
from the patients, and 84 blood samples were included 
in our analysis. We were unable to test plasma PSP in 
2 patients, thus leaving 82 samples for analysis. Eight 
deaths occurred during the specified follow-up period 
resulting in a mortality rate of 38.10% over 90 days. The 
mean age of the population was 69.05 (CI 65.67 – 72.52) 
years, and no significant differences in age were observed 
between survivors and non-survivors. The most common 
comorbidities were hypertension, which was observed 
in 8 patients (38.10%); type 2 diabetes mellitus (DMII), 
5 patients (23.81%); obesity, 3 patients (14.29%); chronic 
kidney failure (CKF), 2 patients (9.52%); and atrial fibril-
lation (9.52%) and chronic heart failure (9.52%). At 
the time of admission, there were no detectable differ-
ences between survivors and nonsurvivors regarding the 
Horowitz index or Sequential Organ Failure Assessment 
(SOFA) scores (Table 1 and Fig. 1).

Primary endpoint
PSP
During the study period, we observed increasing plasma 
PSP levels over time according to mixed model analysis 
(p < 0.001), with higher levels found in the nonsurvivor 
population (p < 0.001). PSP level data were normally dis-
tributed at T0, T1, T2, and T3 (p value < 0.001, < 0.001, < 0
.001, and 0.002, respectively), and significant plasma level 
differences between survivors and nonsurvivors at each 
timepoint were observed. PSP measurements achieved 
a statistically significant result in AUROC analysis with 
a value higher than 0.7 at T0, T1, T2, and T3 (Table 2). 
The overall AUROC of PSP was 0.8271 (CI (0.73–0.93), 
p < 0.001), with a sensitivity of 53.13%, a specificity of 
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92.00%, a positive predictive value of 80.95%, a negative 
predictive value of 75.41%, and a correct classification 
percentage of 76.83%.

PCT
During the study period, we observed a higher plasma 
level of PCT in the non-survivor population (p = 0.014), 
but the result in the mixed model analysis over time was 
not statistically significant. Furthermore, we observed 
that PCT plasma levels decreased over time. PCT data 
were not normally distributed at T0, T1, T2, or T3, and 
significant PCT level differences between survivors and 
non-survivors were shown only at T0 (p = 0.0452). PCT 
also showed a nonsignificant value in AUROC analyses at 

T0, T1, T2, and T3 (Table 3). The overall AUROC of PCT 
was 0.6466 (CI (0.53–0.76),  p = 0.110), with a sensitivity 
of 25.81%, a specificity of 95.56%, a positive predictive 
value of 80.00%, a negative predictive value of 65.15%, 
and a correct classification percentage of 67.11%.

CRP
During the study period, a higher plasma level of CRP 
was observed in the nonsurvivor population, but the 
difference was not significant. The result in the mixed 
model analysis over time between survivors and non-
survivors was not statistically significant. Furthermore, 
CRP decreased over time. CRP values were not nor-
mally distributed at T0, T1, T2, or T3, and no significant 

Table 1 demographic conditions of the study population

Variable mean ± st.dev or % Overall Survivors
(13 patients)

Non Survivors
(8 patients)

p value

Age 69.04 ± 7.63 67.69 ± 8.54 71.25 ± 5.70 0.259

SOFA Baseline 5.28 ± 2.95 4.61 ± 4.17 6.37 ± 2.32 0.145

Horowitz index 142.91 ± 55.91 134.15 ± 60.67 155.31 ± 47.98 0.268

Female at birth% 52.38 53.85 50.00 0.864

Hypertension% 38.10 38.46 37.50 0.965

DM II 23.81 23.08 25.00 0.920

CKF 9.52 0.00 25.00 0.133

Atrial Fibrillation 9.52 0.00 25.00 0.133

Others 38.10% 30.77 50.00 0.378

Fig. 1 Shows the Kaplan Meier survival estimate of the study population and at-risk number in the Cox model
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differences in plasma levels were detected at T0, T1, T2, 
or T3. CRP showed a nonsignificant AUROC value at T0, 
T1, T2, and T3 (Table  4). The overall AUROC of PCT 
was 0.5816 (CI (0.43–0.70),  p = 0.178), with a sensitivity 
of 18.75%, a specificity of 87.76%, a positive predictive 

value of 50.00%, a negative predictive value of 62.32%, 
and a correct classification percentage of 60.49%.

As shown in Fig.  2 (Fig.  2: panel A-B-C), the differ-
ence between survivors and nonsurvivors observed in 
the mixed model analysis was significant for PSP both for 

Table 2 PSP plasma levels in COVID-19 ICU patients: it shows differences between survivors and non-survivors for PSP plasma level 
each time points with Wilcoxon sign rank test, Two-way ANOVA during the time, mixed model coefficients, and Area Under the 
Receiving Operator sensitivity and specificity for the primary outcome

PSP ng/ml T0
(21 patients survived)

T1
(21 patients survived)

T2
(21 patients survived)

T3
(21 patients survived)

Survivors
(mean ± st. dev)

105.53 ± 28.53 157.76 ± 90.26 102.66 ± 66.94 155.25 ± 119.85

Nonsurvivors
(mean ± st. dev)

214.87 ± 134.60 359.75 ± 249.85 399.00 ± 215.15 352.5 ± 119.81

p 0.0098* 0.0148* 0.0003* 0.0048*

Two-way ANOVA P < 0.001

PSP Mortality Timing Cons

Correlation coefficients (Rrm) 210.76 204.94 11.93 86.67

P  < 0.001*  < 0.001* 0.042* 0.003*

T0 T1 T2 T3

AUROC 0.821 0.7019 0.9271 0.9062

P value 0.048 0.030 0.036 0.012

Sensitivity 62.50% 50.00% 75.00% 62.50%

Specificity 100.00% 92.31% 91.67% 91.67%

Positive predictive value 100.00% 80.00% 85.71% 83.33%

Negative predictive value 81.25% 75.00% 84.62% 78.57%

Correctly classified 85.71% 76.19% 85.00% 80.00%

Table 3 PCT plasma levels in COVID-19 ICU patients: it shows differences between survivors and non-survivors for PCT plasma level 
each time points with Wilcoxon sign rank test, Two-way ANOVA during the time, mixed model coefficients, and Area Under the 
Receiving Operator sensitivity and specificity for the primary outcome

PCT ng/ml T0
(21 patients survived)

T1
(21 patients survived)

T2
(21 patients survived)

T3
(21 patients survived)

Survivors
(mean ± st. dev)

0.16 ± 0.15 0.40 ± 0.63 0.16 ± 0.12 0.11 ± 0.040

Nonsurvivors
(mean ± st. dev)

4.46 ± 9.08 5.67 ± 14.05 1.975 ± 4.49 0.97 ± 1.60

P 0.0452 0.7711 0.2217 0.1950

Two-way ANOVA P 0.0176

PCT Mortality Timing Cons

Correlation coefficient (Rrm) 1.44 3.03 -0.240 1.09

P 0.022* 0.014* 0.299 0.343

T0 T1 T2 T3

AUROC 0.7396 0.5476 0.6625 0.6307

P value 0.540 0.458 0.352 0.248

Sensitivity 37.50 14.29% 25.00% 37.50

Specificity 100.00% 100.00% 100.00% 100.00%

Positive predictive value 100.00% 100.00% 100.00% 100.00%

Negative predictive value 70.59% 66.67% 62.50% 68.75%

Correctly classified 75% 68.42% 66.67% 73.68%
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mortality and timing. However, the results for PCT and 
CRP were not significant for either mortality or timing. 
Figure 2 displays the postestimation probability of death 
and the levels of PSP, PCT, and CRP (Fig. 3 panel A-B-C). 
The overall AUROC comparison shows a higher signifi-
cant value for PSP than for PCT and CRP (Fig. 3 panel D 
and Table 5).

Discussion
We investigated the PSP levels in critically ill COVID-
19 patients, and we found the PSP level to be a helpful 
marker in evaluating the severity of illness and in predict-
ing mortality over 90  days. PSP is secreted in the pan-
creas, small intestine and stomach and has been shown 
to be upregulated in the presence of infection and organ 
dysfunction; in fact, PSP plasma levels are significantly 
increased [4, 17, 18]. PSP may have an activating effect 
on leukocytes, triggering polymorphonuclear neutro-
phil granulocyte activation. This activation facilitates the 
adherence of selectins and integrins on the neutrophil 
surface to the vessel walls, i.e., to the endothelial cells; this 
mechanism plays an essential role in the development of 
pulmonary oedema and acute respiratory distress syn-
drome (ARDS) observed in severe COVID-19 infec-
tions [19, 20]. The loss of endothelial integrity is crucial 
in COVID-19 [21, 22]. This phenomenon could explain 
why PSP plasma levels increase over time in critically ill 
COVID-19 patients. It is important to underline that PSP 

is not an inflammatory protein but a direct indicator of an 
inflammatory state. In this study, PSP performed better 
than PCT and CRP as a biomarker for disease progres-
sion, in agreement with Llewelyn et al. [23]. Plasma bio-
markers such as CRP and PCT are insufficiently sensitive 
or specific in predicting the onset of severe septic shock, 
ARDS and COVID-19-related acute viral septic shock 
in these critically ill patients [17, 24, 25]. Several studies 
have evaluated the role of CRP in COVID-19. Some of 
them found that elevated CRP on admission for patients 
with COVID-19 was associated with increased in-patient 
mortality and was indicative of disease severity at admis-
sion [26–28], while other studies documented no signifi-
cant differences in the CRP level among mild, severe, and 
critical patients. The role of CRP remains controversial in 
the medical literature about its prognostic role: according 
to Pierrakos et al., quantification of this protein is widely 
used, but it has limited ability to distinguish sepsis from 
other inflammatory conditions or to predict the outcome 
[29, 30]. PSP has the potential to perform better, and this 
is the first study documenting the potential role of PSP 
for risk stratification in COVID-19 patients. Additionally, 
the availability of this test at the point-of-care may pro-
vide further advantages through faster results and timely 
clinical decisions.

PSP showed an AUROC value higher than 0.7 at each 
measurement timepoint, as well as a significant result 
in the mixed model analysis over time and a significant 

Table 4 CRP plasma levels in COVID-19 ICU patients: it shows differences between survivors and non-survivors for CRP plasma 
level each time points with Wilcoxon sign rank test, Two-way ANOVA during the time, mixed model coefficients, and Area Under the 
Receiving Operator sensitivity and specificity for the primary outcome

CRP mg/dl T0
(21 patients survived)

T1
(21 patients survived)

T2
(21 patients survived)

T3
(21 patients survived)

Survivors
(mean ± st. dev)

9.88 ± 7.34 5.01 ± 6.49 2.01 ± 3.16 1.60 ± 2.53

Nonsurvivors
(mean ± st. dev)

8.37 ± 8.04 8.05 ± 9.26 4.98 ± 5.57 6.03 ± 7.74

P 0.5817 0.6075 0.1738 0.2177

Two-way ANOVA P 0.1394

CRP Mortality Timing Cons

Correlation
coefficient (Rrm)

5.60 2.15 -0.92 8.18

P  < 0.001* 0.127  < 0.001*  < 0.001*

T0 T1 T2 T3

AUROC 0.5769 0.5729 0.6823 0.6615

P value 0.645 0.394 0.151 0.119

Sensitivity 0.00% 25.00 37.50 37.50

Specificity 100.00% 83.33% 83.33% 91.67%

Positive predictive value 0.00% 50.00% 60.00% 75.00%

Negative predictive value 61.90% 62.50% 66.67% 68.75%

Correctly classified 61.90% 60.00% 65.00% 70.00%
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difference in plasma levels between survivors and non-
survivors; these differences were not observed for PCT 
and CRP plasma levels. Multiple studies showed that 
PCT levels show no significant increase in COVID-19 
patients and the presented results for PCT are not sur-
prising [3, 31]. Therefore, increased PCT levels may be a 
useful marker to detect the emergence of secondary bac-
terial infection in critical care patients [32]. PCT showed 
a lower sensitivity compared to PSP and these results 
partially agree with results from Que et al. and Gukasjan 
et al. PCT probably has better sensitivity in case of septic 
shock due bacterial infection and severity of sepsis [17, 
33]. Specifically, PCT levels are important markers of dis-
ease severity in case of sepsis, as shown be Que et al. [34] 
among others.

Additionally, while bacterial sepsis and COVID-19 are 
two distinct disease entities, each underpinned by its 
pathophysiology, the two frequently overlap as sepsis is 
a common late complication of COVID-19 in the ICU 
population, partly due to direct effects of the primary 
viral infection on the immune system, but also due to 

iatrogenic complications of immunomodulatory medi-
cations, invasive ventilation as well as other invasive 
procedure that are commonly performed in this setting. 
There are several differences between the two, as in the 
bacterial sepsis the systemic inflammation leads an early 
and sudden clinical deterioration, while COVID-19 has 
demonstrated a complex pathogenesis that involves other 
mechanisms of tissue damage and typically a late clini-
cal deterioration in the disease course [35]. According to 
Fidalgo et al. PSP accuracy for the diagnosis of infection 
and sepsis seems to be at least comparable to the bio-
markers currently used in clinical practice. Furthermore, 
it seems to outperform those biomarkers in the predic-
tion of sepsis, because PSP levels seem to anticipate the 
clinical diagnosis [36–38]. PSP also seems to have a good 
prognostic value for mortality at 28  days also in sepsis 
especially if combined with blood lactate or PCT [5, 34]. 
We hypothesize that PSP may have better prognostic 
performance compared to other biomarkers because it 
is affected both by the primary viral disease and by sep-
sis, which is a common complication in the late course 

Fig. 2 Shows the postestimation margin plot of the repeated measures mixed model between survivors and non-survivors for PSP (panel A), PCT 
(panel B), and CRP (panel C)
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of COVID-19. This may be particularly useful for prog-
nostication in the late course of the disease. Other studies 
that have compared biomarkers for prognosis in COVID-
19 have used samples from the time of admission, emer-
gency department presentation or unspecified time and 
have not found significant differences in performance 
with PCT or CRP, while ours has used samples collected 
at multiple times, including in the late phase of disease [2, 

8]. Lastly, the use of this biomarker does not exclude the 
use of others, as certainly integration of data may provide 
important and complementary information.

The cytokine storm in COVID-19 suggested that IL-6 
might be useful as prognostic biomarker, hence medi-
cal research investigated this question [39–41]. Gorham 
et al. demonstrated the value of repeated measurements 
of IL-6 in critically severe COVID-19 patients, identify-
ing patients with a high risk of poor prognosis. During 
the COVID-19 pandemic, IL-6 plasma levels progres-
sively became a routine laboratory exam at our insti-
tution. However, due to the high demand and limited 
capacity during the study period, the serial measurement 
of plasma IL-6 cytokines was not possible. Consequently, 
we were not able to compare PSP and IL-6, which has 
been shown in several studies to be associated with the 
degree of disease severity [42–45]. In a study by Que et. 
al that compared PSP and IL-6 in predicting mortality, 
PSP performed better than IL-6. While IL-6 appears to 
be an accurate prognostic marker, the measured plasma 
levels do not seem to perform equally good as treatment 

Fig. 3 Shows the postestimation margin plots, with the probability of death plotted on the y-axis and the level of PSP (panel A), PCT (panel B) and 
CRP (panel C) plotted on the x-axis. Panel D shows the overall AUROC comparison for PSP, PCT and CRP

Table 5 AUROC comparison among PSP, PCT and CRP plasma 
levels in COVID-19 ICU patients

AUROC CI P value Bonferroni
p value

PSP 0.8360 0.73540
0.93664

PCT 0.6471 0.53348
0.76068

0.002*  < 0.001*

CRP 0.5718 0.43890
0.70473

 < 0.001*  < 0.001*
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response markers [17]. Unfortunately, due to the avail-
ability issues at our institution of IL-6 testing, we could 
not compare IL-6 and PSP as treatment response bio-
markers. Another possible biomarker to predict evolu-
tion in COVID-19 patients is D-dimer. In some studies, 
coagulation measured D-dimer levels were significantly 
higher in patients who developed ARDS and died than in 
patients who survived [46–48]. However, the interpreta-
tion of D-dimer during disease monitoring is currently 
unclear, as it may not be directly related to disease sever-
ity [49].

The absence of specific prognostic biomarkers in 
severe COVID-19 makes the research on the role of PSP 
through point-of-care technology even more interest-
ing. Observing the post-estimation model (Fig. 3 A), it is 
possible to infer that a value of PSP, at the time of ICU 
admission, between 250–300  ng/ml is associated with a 
probability of death at 90  days above 50% (Fig.  3 panel 
A). However, while our study has multiple measures for 
every patient by design, the sample size for PSP levels at 
admission is not enough to clearly answer this research 
question. Studies with larger sample size are granted to 
clearly identify and validate a cut-off of PSP blood levels 
ad a prognostic biomarker. Recently, medical research-
ers investigated the role of various endothelial proteins 
in COVID-19, and some researchers have measured PSP 
using ELISA methods [50, 51]. In contrast, point-of-
care technology provides a quick result (PSP results are 
available within 7.5 min with the abioSCOPE platform), 
which allows physicians to triage patients according to 
the severity of illness and to start the most appropriate 
medical treatment as soon as possible, in conformity 
with the “golden hour”, although a little more expensively 
than the ELISA method. The advantages of this technol-
ogy are already widely known, as it is used in coagulation 
and thromboelastography tests. This study was carried 
out following the CONSORT guidelines. This research 
has limitations, mainly in the single-center nature of the 
study and in the small sample of patients enrolled. As a 
consequence, our results do not allow for generalization 
to other settings. We find the prospective observational 
nature with repeated measures a strength of our study.

Conclusions
These first results suggest the potential advantages of 
monitoring PSP levels in predicting long-term mortal-
ity with the help of a point-of-care technology, which 
can provide results in under 10 min and at the patient’s 
bedside. Furthermore, our results showed a low sensitiv-
ity of PCT compared to PSP, so we conclude that moni-
toring and measuring the clinical course of this protein 
may be helpful. Monitoring PSP levels with point-of-care 
technology could prove to be useful in the absence of a 

specific and clinically validated COVID-19 biomarker. 
Additional data are needed to confirm these findings.
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